Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464205

RESUMO

Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis. Non-standard abbreviations and acronyms: RBX2, RING-Box Protein 2; SAG, Sensitive to Apoptosis Gene; Ub, Ubiquitin; pS65-Ub, phosphorylated Ub at serine 65; MAVS, mitochondrial antiviral-signaling protein; AAV, adeno-associated virus; AV, adenovirus; siRNA, Small interfering RNA; GFP, green fluorescent protein; CUL, cullin; RING, Really Interesting New Gene; CRLs, cullin-RING ligases; CSN, COP9 signalosome; APEX2, ascorbate peroxidase 2; mito, mitochondrial; cyto, cytosolic; MOM, mitochondrial outer membrane; CCCP, Carbonyl Cyanide Chlorophenylhydrazone; OMP25, Outer membrane protein 25; PK, proteinase K; HA, hemagglutinin; TMRM, Tetramethylrhodamine methyl ester perchlorate; αMHC,α-myosin heavy chain; CKO, cardiomyocyte-specific knockout; TAM, tamoxifen; TMT, tandem mass tag; KD, knockdown; CTL, control; MCM, MerCreMer; iCKO, inducible cardiomyocyte-specific knockout; BFA, bafilomycin A1; PCA, principle component analysis; MS, Mass spectrometry; DEPs, differentially expressed proteins; FC, fold change; FDR, False Discovery Rate; KEGG, Kyoto encyclopedia of genes and genomes; ER, endoplasmic reticulum; DKO, double knockout; CM, cardiomyocyte; cTnT, cardiac troponin T; NRVCs, neonatal rat ventricular cardiomyocytes; NRVMs, neonatal mouse ventricular cardiomyocytes; NMVFs, neonatal mouse ventricular fibroblasts; HF, heart failure; KO, knockout; MF, Molecular Functions; CC, Cellular Components; BP, Biological Process; TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; SCF, Skp1-Cullin 1-F-box.

2.
Aging (Albany NY) ; 16(5): 4736-4758, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38461424

RESUMO

Ovarian cancer stands as a prevalent malignancy within the realm of gynecology, and the emergence of resistance to chemotherapeutic agents remains a pivotal impediment to both prognosis and treatment. Through a single-cell level investigation, we scrutinize the drug resistance and mitotic activity of the core tumor cells in ovarian cancer. Our study revisits the interrelationships and temporal trajectories of distinct epithelial cells (EPCs) subpopulations, while identifying genes associated with ovarian cancer prognosis. Notably, our findings establish a strong association between the drug resistance of EPCs and oxidative phosphorylation pathways. Subsequently, through subpopulation and temporal trajectory analysis, we confirm the intermediate position of EPCs subpopulation C0. Furthermore, we delve into the immunological functions and differentially expressed genes associated with the prognosis of C0, shedding light on the potential for constructing novel ovarian cancer prognosis models and identifying new therapeutic targets.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Células Epiteliais/metabolismo , Análise de Sequência de RNA
3.
Autophagy ; : 1-34, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442890

RESUMO

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.

4.
Nat Cell Biol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424270

RESUMO

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

5.
Acta Pharm Sin B ; 13(10): 4217-4233, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799381

RESUMO

Increasing evidences suggest the important role of calcium homeostasis in hallmarks of cancer, but its function and regulatory network in metastasis remain unclear. A comprehensive investigation of key regulators in cancer metastasis is urgently needed. Transcriptome sequencing (RNA-seq) of primary esophageal squamous cell carcinoma (ESCC) and matched metastatic tissues and a series of gain/loss-of-function experiments identified potassium channel tetramerization domain containing 4 (KCTD4) as a driver of cancer metastasis. KCTD4 expression was found upregulated in metastatic ESCC. High KCTD4 expression is associated with poor prognosis in patients with ESCC and contributes to cancer metastasis in vitro and in vivo. Mechanistically, KCTD4 binds to CLIC1 and disrupts its dimerization, thus increasing intracellular Ca2+ level to enhance NFATc1-dependent fibronectin transcription. KCTD4-induced fibronectin secretion activates fibroblasts in a paracrine manner, which in turn promotes cancer cell invasion via MMP24 signaling as positive feedback. Furthermore, a lead compound K279-0738 significantly suppresses cancer metastasis by targeting the KCTD4‒CLIC1 interaction, providing a potential therapeutic strategy. Taken together, our study not only uncovers KCTD4 as a regulator of calcium homeostasis, but also reveals KCTD4/CLIC1-Ca2+-NFATc1-fibronectin signaling as a novel mechanism of cancer metastasis. These findings validate KCTD4 as a potential prognostic biomarker and therapeutic target for ESCC.

6.
Circ Res ; 133(7): 572-587, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641975

RESUMO

BACKGROUND: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS: Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Cadeia B de alfa-Cristalina , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Miócitos Cardíacos , Proteínas Quinases Dependentes de AMP Cíclico , Ubiquitinas
7.
Acta Pharmacol Sin ; 44(12): 2537-2548, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528233

RESUMO

5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU. By analyzing GEO datasets, we found that the mRNA expression levels of USP14 and UCHL5 in CRC tissues were significantly increased, and negatively correlated with the survival of CRC patients. Knockdown of both USP14 and UCHL5 led to increased 5-FU sensitivity in 5-FU-resistant CRC cell lines (RKO-R and HCT-15R), whereas overexpression of USP14 and UCHL5 in 5-FU-sensitive CRC cells decreased 5-FU sensitivity. B-AP15, a specific inhibitor of USP14 and UCHL5, (1-5 µM) dose-dependently inhibited the viability of RKO, RKO-R, HCT-15, and HCT-15R cells. Furthermore, treatment with b-AP15 reduced the malignant phenotype of CRC cells including cell proliferation and migration, and induced cell death in both 5-FU-sensitive and 5-FU-resistant CRC cells by impairing proteasome function and increasing reactive oxygen species (ROS) production. In addition, b-AP15 inhibited the activation of NF-κB pathway, suppressing cell proliferation. In 5-FU-sensitive and 5-FU-resistant CRC xenografts nude mice, administration of b-AP15 (8 mg·kg-1·d-1, intraperitoneal injection) effectively suppressed the growth of both types of tumors. These results demonstrate that USP14 and UCHL5 play an important role in the development of CRC and resistance to 5-FU. Targeting USP14 and UCHL5 with b-AP15 may represent a promising therapeutic strategy for the treatment of CRC.


Assuntos
Neoplasias Colorretais , Complexo de Endopeptidases do Proteassoma , Animais , Camundongos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Camundongos Nus , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ubiquitina Tiolesterase
9.
Cell Discov ; 9(1): 74, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460462

RESUMO

Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.

10.
Methods Mol Biol ; 2690: 179-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450148

RESUMO

Proteins are the building blocks of life, and a vast array of cellular processes is handled by protein-protein interactions (PPIs). The protein complexes formed via PPIs lead to tangled networks that, with their continuous remodeling, build up systematic functional units. Over the years, PPIs have become an area of interest for many researchers, leading to the development of multiple in vitro and in vivo methods to reveal these interactions. The yeast-two-hybrid (Y2H) system is a potent genetic way to map PPIs in both a micro- and high-throughput manner. Y2H is a technique that involves using modified yeast cells to identify protein-protein interactions. For Y2H, the yeast cells are engineered only to grow when there is a significant interaction between a specific protein with its interacting partner. PPIs are identified in the Y2H system by stimulating reporter genes in response to a restored transcription factor. However, Y2H results may be constrained by stringency requirements, as the limited number of colony screenings through this technique could result in the possible elimination of numerous genuine interactions. Therefore, DEEPN (dynamic enrichment for evaluation of protein networks) can be used, offering the potential to study the multiple static and transient protein interactions in a single Y2H experiment. DEEPN utilizes next-generation DNA sequencing (NGS) data in a high-throughput manner and subsequently applies computational analysis and statistical modeling to identify interacting partners. This protocol describes customized reagents and protocols through which DEEPN analysis can be utilized efficiently and cost-effectively.


Assuntos
Saccharomyces cerevisiae , Fatores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Genes Reporter , Fatores de Transcrição/metabolismo , Mapeamento de Interação de Proteínas/métodos
11.
J Sep Sci ; 46(19): e2300314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37485594

RESUMO

Compound Chinese medicine preparation is a complex multi-component system. The traditional methods such as physicochemical identification and quantification of several main index components cannot provide adequate quality evaluation for Compound Banlangen Granules. The objective of this work was to establish a characteristic degradation fingerprint of Compound Banlangen Granules polysaccharides, and the reference fingerprint was obtained from the model samples prepared using prescription medicinal herbs from different origins. The partial degradation products of Compound Banlangen Granules polysaccharides were profiled by capillary zone electrophoresis, and the quality difference of polysaccharides of these preparations was compared by cluster analysis and principal component analysis. It was found that the contents and the characteristic degradation fingerprints of the polysaccharides from 25 batches of Compound Banlangen Granules of 17 manufacturers were significantly different. The quality of Compound Banlangen Granules polysaccharides was evaluated by the characteristic degradation fingerprint tool with satisfactory results. The present method provides a reference for the quality control strategy development of polysaccharides in other compound Chinese medicine preparations.

12.
Trends Plant Sci ; 28(12): 1379-1390, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37453923

RESUMO

Orphan genes (OGs) are protein-coding genes without a significant sequence similarity in closely related species. Despite their functional importance, very little is known about the underlying molecular mechanisms by which OGs participate in diverse biological processes. Here, we discuss the evolutionary mechanisms of OGs' emergence with relevance to species-specific adaptations. We also provide a mechanistic view of the involvement of OGs in multiple processes, including growth, development, reproduction, and carbon-metabolism-mediated immunity. We highlight the interconnection between OGs and the sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs)-target of rapamycin (TOR) signaling axis for phytohormone signaling, nutrient metabolism, and stress responses. Finally, we propose a high-throughput pipeline for OGs' interspecies and intraspecies gene transfer through a transgenic approach for future biotechnological advances.


Assuntos
Plantas , Transdução de Sinais , Plantas/genética , Plantas/metabolismo , Transdução de Sinais/genética , Reguladores de Crescimento de Plantas/metabolismo , Evolução Biológica , Biologia
13.
J Dev Biol ; 11(2)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367481

RESUMO

Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.

14.
Nat Commun ; 14(1): 3815, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369679

RESUMO

N6-methyladenosine (m6A) modification plays important roles in bioprocesses and diseases. AlkB homolog 5 (ALKBH5) is one of two m6A demethylases. Here, we reveal that ALKBH5 is acetylated at lysine 235 (K235) by lysine acetyltransferase 8 and deacetylated by histone deacetylase 7. K235 acetylation strengthens the m6A demethylation activity of ALKBH5 by increasing its recognition of m6A on mRNA. RNA-binding protein paraspeckle component 1 (PSCP1) is a regulatory subunit of ALKBH5 and preferentially interacts with K235-acetylated ALKBH5 to recruit and facilitate the recognition of m6A mRNA by ALKBH5, thereby promoting m6A erasure. Mitogenic signals promote ALKBH5 K235 acetylation. K235 acetylation of ALKBH5 is upregulated in cancers and promotes tumorigenesis. Thus, our findings reveal that the m6A demethylation activity of ALKBH5 is orchestrated by its K235 acetylation and regulatory subunit PSPC1 and that K235 acetylation is necessary for the m6A demethylase activity and oncogenic roles of ALKBH5.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Humanos , Acetilação , RNA Mensageiro/metabolismo , Carcinogênese/genética , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Desmetilação , Proteínas de Ligação a RNA/metabolismo
16.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108512

RESUMO

Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Secas , Fatores de Transcrição/metabolismo , Biologia de Sistemas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
17.
Free Radic Biol Med ; 203: 1-10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011699

RESUMO

Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, remains a global health challenge requiring novel and effective therapeutic agents and approaches. Here, we found that a natural product plumbagin can inhibit the growth of HCC cells by inducing the downregulation of GPX4, but not other antioxidant enzymes such as CAT, SOD1, and TXN. Functionally, genetic silence of GPX4 enhances, whereas the overexpression of GPX4 inhibits plumbagin-induced apoptosis (rather than ferroptosis) in HCC cells. Furthermore, GPX4 protein specifically binds the deubiquitinase USP31, but not other deubiquitinases such as CYLD, USP1, USP14, USP20, USP30, USP38, UCHL1, UCHL3, and UCHL5. As an inhibitor of deubiquitinating enzymes, especially USP31, plumbagin induces ubiquitination of GPX4 and subsequent proteasomal degradation of GPX4 in HCC cells. Accordingly, plumbagin-mediated tumor suppression is also associated with the downregulation of GPX4 and the upregulation of apoptosis in a subcutaneous xenograft tumor model. Taken together, these findings demonstrate a novel anticancer mechanism of plumbagin by inducing GPX4 protein degradation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Apoptose , Ubiquitina Tiolesterase , Tioléster Hidrolases , Proteínas Mitocondriais , Proteases Específicas de Ubiquitina/farmacologia
18.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066344

RESUMO

Background: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that cAMP-dependent protein kinase (PKA) activates the 26S proteasome by phosphorylating Ser14 of RPN6 (pS14-RPN6), but this discovery and its physiological significance remain to be established in vivo . Methods: Male and female mice with Ser14 of Rpn6 mutated to Ala (S14A) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system (UPS) functioning was evaluated with the GFPdgn reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G). Results: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type (WT) but not S14A embryonic fibroblasts (MEFs), adult cardiomyocytes (AMCMs), and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and AMCMs than in WT counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with non- transgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than WT neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates and of aberrant CryAB protein aggregates, less reactivation of fetal genes and cardiac hypertrophy, and delays in cardiac malfunction. Conclusions: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifies a new therapeutic target to reduce cardiac proteotoxicity.

19.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049865

RESUMO

The destructive effect and mode of action of lemon verbena essential oil on cells were investigated, taking the isolated Pseudosciaena D4 as the research object. The extracellular absorbance of the Pseudosciaena D4 increased at OD260 and OD280 after being treated with lemon verbena essential oil, which destroyed the integrity of Pseudosciaena D4 cells, showing a significant effect on preventing biomembrane formation and destroying the formed biomembrane. With an increased concentration of lemon verbena essential oil, extracellular polysaccharide showed a significant decrease in content and a significant increase in inhibition rate, indicating that the secretion of extracellular polysaccharide by Pseudosciaena D4 cells could be inhibited by lemon verbena essential oil during the process of biomembrane formation. Cell introcession and shrinkage appeared after the treatment with essential oil, and a transparent cavity was formed by the out-flowed cell content. Lemon verbena essential oil destroyed the cell wall, resulting in an enhanced permeability of the cell membrane and leakage of the contents, thereby causing cell death.


Assuntos
Óleos Voláteis , Verbena , Verbenaceae , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo
20.
Autophagy ; 19(8): 2175-2195, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055935

RESUMO

Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions. Pathologically, impaired copper metabolism due to environmental or genetic causes is implicated in a variety of human diseases, such as rare Wilson disease and common cancers. Therapeutically, copper-based compounds are potential chemotherapeutic agents that can be used alone or in combination with other drugs or approaches to treat cancer. Here, we review the progress made in understanding copper metabolic processes and their impact on the regulation of cell death and autophagy. This knowledge may help in the design of future clinical tools to improve cancer diagnosis and treatment.Abbreviations: ACSL4, acyl-CoA synthetase long chain family member 4; AIFM1/AIF, apoptosis inducing factor mitochondria associated 1; AIFM2, apoptosis inducing factor mitochondria associated 2; ALDH, aldehyde dehydrogenase; ALOX, arachidonate lipoxygenase; AMPK, AMP-activated protein kinase; APAF1, apoptotic peptidase activating factor 1; ATF4, activating transcription factor 4; ATG, autophagy related; ATG13, autophagy related 13; ATG5, autophagy related 5; ATOX1, antioxidant 1 copper chaperone; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting alpha; ATP7B, ATPase copper transporting beta; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCS, bathocuproinedisulfonic acid; BECN1, beclin 1; BID, BH3 interacting domain death agonist; BRCA1, BRCA1 DNA repair associated; BSO, buthionine sulphoximine; CASP1, caspase 1; CASP3, caspase 3; CASP4/CASP11, caspase 4; CASP5, caspase 5; CASP8, caspase 8; CASP9, caspase 9; CCS, copper chaperone for superoxide dismutase; CD274/PD-L1, CD274 molecule; CDH2, cadherin 2; CDKN1A/p21, cyclin dependent kinase inhibitor 1A; CDKN1B/p27, cyclin-dependent kinase inhibitor 1B; COMMD10, COMM domain containing 10; CoQ10, coenzyme Q 10; CoQ10H2, reduced coenzyme Q 10; COX11, cytochrome c oxidase copper chaperone COX11; COX17, cytochrome c oxidase copper chaperone COX17; CP, ceruloplasmin; CYCS, cytochrome c, somatic; DBH, dopamine beta-hydroxylase; DDIT3/CHOP, DNA damage inducible transcript 3; DLAT, dihydrolipoamide S-acetyltransferase; DTC, diethyldithiocarbamate; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK3/PERK, eukaryotic translation initiation factor 2 alpha kinase 3; ER, endoplasmic reticulum; ESCRT-III, endosomal sorting complex required for transport-III; ETC, electron transport chain; FABP3, fatty acid binding protein 3; FABP7, fatty acid binding protein 7; FADD, Fas associated via death domain; FAS, Fas cell surface death receptor; FASL, Fas ligand; FDX1, ferredoxin 1; GNAQ/11, G protein subunit alpha q/11; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HDAC, histone deacetylase; HIF1, hypoxia inducible factor 1; HIF1A, hypoxia inducible factor 1 subunit alpha; HMGB1, high mobility group box 1; IL1B, interleukin 1 beta; IL17, interleukin 17; KRAS, KRAS proto-oncogene, GTPase; LOX, lysyl oxidase; LPCAT3, lysophosphatidylcholine acyltransferase 3; MAP1LC3, microtubule associated protein 1 light chain 3; MAP2K1, mitogen-activated protein kinase kinase 1; MAP2K2, mitogen-activated protein kinase kinase 2; MAPK, mitogen-activated protein kinases; MAPK14/p38, mitogen-activated protein kinase 14; MEMO1, mediator of cell motility 1; MT-CO1/COX1, mitochondrially encoded cytochrome c oxidase I; MT-CO2/COX2, mitochondrially encoded cytochrome c oxidase II; MTOR, mechanistic target of rapamycin kinase; MTs, metallothioneins; NAC, N-acetylcysteine; NFKB/NF-Κb, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NPLOC4/NPL4, NPL4 homolog ubiquitin recognition factor; PDE3B, phosphodiesterase 3B; PDK1, phosphoinositide dependent protein kinase 1; PHD, prolyl-4-hydroxylase domain; PIK3C3/VPS34, phosphatidylinositol 3-kinase catalytic subunit type 3; PMAIP1/NOXA, phorbol-12-myristate-13-acetate-induced protein 1; POR, cytochrome P450 oxidoreductase; PUFA-PL, PUFA of phospholipids; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SCO1, synthesis of cytochrome C oxidase 1; SCO2, synthesis of cytochrome C oxidase 2; SLC7A11, solute carrier family 7 member 11; SLC11A2/DMT1, solute carrier family 11 member 2; SLC31A1/CTR1, solute carrier family 31 member 1; SLC47A1, solute carrier family 47 member 1; SOD1, superoxide dismutase; SP1, Sp1 transcription factor; SQSTM1/p62, sequestosome 1; STEAP4, STEAP4 metalloreductase; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TFEB, transcription factor EB; TM, tetrathiomolybdate; TP53/p53, tumor protein p53; TXNRD1, thioredoxin reductase 1; UCHL5, ubiquitin C-terminal hydrolase L5; ULK1, Unc-51 like autophagy activating kinase 1; ULK1, unc-51 like autophagy activating kinase 1; ULK2, unc-51 like autophagy activating kinase 2; USP14, ubiquitin specific peptidase 14; VEGF, vascular endothelial gro wth factor; XIAP, X-linked inhibitor of apoptosis.


Assuntos
Autofagia , Neoplasias , Humanos , Autofagia/fisiologia , Proteína Supressora de Tumor p53 , Fator de Indução de Apoptose , Cobre , Ubiquinona , Complexo IV da Cadeia de Transporte de Elétrons , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Proto-Oncogênicas p21(ras) , Apoptose/fisiologia , Caspases , Fator 1 Induzível por Hipóxia , Superóxido Dismutase , Íons , Proteínas Proto-Oncogênicas c-bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...